Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation.
نویسندگان
چکیده
Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: Candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. Whereas generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.
منابع مشابه
Application of Monte Carlo Simulation in the Assessment of European Call Options
In this paper, the pricing of a European call option on the underlying asset is performed by using a Monte Carlo method, one of the powerful simulation methods, where the price development of the asset is simulated and value of the claim is computed in terms of an expected value. The proposed approach, applied in Monte Carlo simulation, is based on the Black-Scholes equation which generally def...
متن کاملMonte Carlo Methods for Equilibrium and Nonequilibrium Problems in Interfacial Electrochemistry∗
We present a tutorial discussion of Monte Carlo methods for equilibrium and nonequilibrium problems in interfacial electrochemistry. The discussion is illustrated with results from simulations of three specific systems: bromine adsorption on silver (100), underpotential deposition of copper on gold (111), and electrodeposition of urea on platinum (100).
متن کاملCalculation of Nonlinear Thermoelectric Coefficients of InAs1 xSbx Using Monte Carlo Method
It was found that the nonlinear Peltier effect could take place and increase the cooling power density when a lightly doped thermoelectric material is under a large electrical field. This effect is due to the Seebeck coefficient enhancement from an electron distribution far from equilibrium. In the nonequilibrium transport regime, the solution of the Boltzmann transport equation in the relaxati...
متن کاملProject Time and Cost Forecasting using Monte Carlo simulation and Artificial Neural Networks
The aim of this study is to present a new method to predict project time and cost under uncertainty. Assuming that what happens in projects implementation which is expressed in the form of Earned Value Management (EVM) indicators is primarily related to the nature of randomness or unreliability, in this study, by using Monte Carlo simulation, and assuming a specific distribution for the time an...
متن کاملA Nonequilibrium Lattice Gas of Two-species: Monte Carlo Investigations
We present the phase diagram of a far from equilibrium system, mapped by Monte Carlo simulation. The model is a lattice gas of two species and holes. The two species are biased to hop in opposite directions and interact via excluded volume and nearest neighbor attractions. Three phases are found as function of temperature and charge density. Introduction. A comprehensive theory of nonequilibriu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 45 شماره
صفحات -
تاریخ انتشار 2011